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Introduction

• Drug safety data are multivariate and
many factors are interdependent
– Many safety hypothesis cannot be

specified a priori
– Static reports can only give a partial

display of the complex relationships
– In practice, this complexity is difficult to

communicate
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Improving the detection of
rare and serious events
• Traditionally, clinical trials are not

powered to detect rare adverse events
due to financial and logistic restrictions

• Analysis of frequencies highlights the
most common events
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• Safety information in medical data
bases could be assessed as the data
accumulate

• Critical issues could be addressed early
and timely and correct adjustments
could be made
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• In practice, there is a big delay in
analyzing data

• More time is spent “cleaning” than in
analyzing data (ST Bennet, JA Adams. Applied
clinical trials. 4:44-52,1995)

• The cleaning process is complex to
document

• The time spent in adapting data and
analytical tools is costly
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• We reach to information by use of
extensive manual configuration and
adaptation

• Retrieval of the information is too
complicated

• Databases cannot be easily linked
• Integration is complicated
• Information cannot be easily exchanged
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Data structures that
facilitate automatic analyses
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Common data standards will
benefit the analyses across all
types of medical data, including
• clinical trials
• spontaneous adverse drug reactions

databases
• drug exposure
• medical claims
• hospitals medical records
• longitudinal electronic medical records
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Self-describing representation
of medical data (Comments by Channing
Russell)

• Will provide substantial help to both sponsors
and regulators

• Will reduce
– the need for study-by-study tool configuration that

hinders analysis of safety data
– the arbitrary differences in clinical data

representation
– unnecessary variability in the sponsor environment

• Will simplify data integration
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• We need
– programs that can identify meanings of

common variables without asking the user
– comprehensive metadata of datasets and

variables in human-readable format

• Common data standards will improve
systematic retrieval, analysis, and re-
analysis

• Will improve re-examination and
reflection on the data already collected
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Data integration

• Clinical and laboratory adverse events,
medication information, and co-
morbidity information

• Inclusion of scheduled and unscheduled
clinical laboratory data
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Display of the duration of treatment and follow up and the
timing of increases in ALT for the 500 patients in a study
receiving a "low" and a "high" dose treatment
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Same patients as before but display of the timing of
granulocytopenia, increases in ALT, and thrombocytopenia
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Dynamic linkage enables
“drilling down” from a “coarse”
display (shown in the
previous graph) to a
“granular” display (shown in
this graph) of all the
interesting features of
individual patients (clinical
adverse events, laboratory
measurements, medications,
cause of death, etc.) on a
common timeline
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Signal detection based on
post-marketing surveillance
data
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Use of Electronic
Longitudinal Medical
Records
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Data mining spontaneous
reports
• Principal investigator: Ana Szarfman
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The new Data Mining Systems
support the following signaling
functions
• Detection of "higher than expected"

signal scores for
– Drug-event combinations by drug, drug

class, event, event group, and time interval
– Gender-related drug-event combinations

by drug and event
– Interactions between events and drug pairs
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Uncertainties with FDA’s post-
marketing safety database
• No research protocol

that can control for
– Selection bias
– Under-reporting
– Reports enriched in

response to publicity or
“Dear Doctor” letters

– Variable historical data

• Some of the data may
be invalid: duplications,
coding errors, poor
quality of information

See more details:
http://www.fda.gov/cder/
adr/

Impossible to review over 1.8 million records prior
to datamining
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The challenge of working with
this database
• Identification in the vast array of drug-

event frequencies,
– those which are the "interestingly large"

frequencies that should be subject to
further investigation

• No research protocol
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Benefits of working with this
database
• Most important of its kind in the U.S.
• Proved its value by identifying and

documenting many serious rare adverse
drug reactions not identified during
randomized controlled clinical trials

• Has a standardized structure
• Over 1.8 million records
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Controlling for potential
confounding
• Use of stratification

– There are independent trends that could
masquerade as drug-event signals

– We currently use over 200 strata, including
time by 5-year intervals, gender by 3
groups (M/F/U), 10 different age
categories, and type of data (SRS or
AERS)
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The role of stratification by
time interval
• Controls for temporal trends in drug

usage and for temporal tends in
adverse event reporting (independent of
drug)

• The time course of safety signals also
helps sort out events that are a
response to publicity, Dear Doctor
letters, etc



ISPE  August 28, 1999 Ana Szarfman, MD, PhD 29

The role of stratification by
gender
• Controls for gender-based patterns in

drug usage and gender-based patterns
in adverse event reporting
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The role of stratification by
age groups
• Controls for drugs with age specific

exposure and for events in the same
age specific groups
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The role of stratification by
type of data (SRS or AERS)
• Controls for the use of a new event

nomenclature (Meddra) and for the
inclusion of more drugs and events per
record
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Components of the New
Systems

Program modules for each graphic type

Derived datasets of signal scores

SRS or AERS data extraction

A database of all distinct counts of
event + drug (or drug pair)
combinations derived from the former
SRS database and the post October
1997 AERS database

New technology: Uses distinct counts of event
+ drug (or drug pair) combinations to estimate
SS derived from application of a statistical
model to identify the ones observed at higher
than expected frequencies

New technology: A set of
pre-programmed graphical
displays and modules to
explore and examine SS
and ancillary data
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Components of the New
Systems

Program modules for each graphic type

Derived datasets of signal scores

SRS or AERS data extraction

A database of all distinct counts of
event + drug (or drug pair)
combinations derived from the former
SRS database and the post October
1997 AERS database
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Input to systems
• 32 years of data in a standardized

structure
• Drugs

– SRS over 2,500 generic names
– AERS over 3,000 trade names

• Events
– COSTART over 1,200
– Meddra PT over 6,000 event terms
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Output from this module
•The frequency of each distinct combination of
any drug, event, sex, time, and age group
•Separate outputs for SRS and AERS data
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First Lines of the Output

ANALYSIS_NAME COSTART SEX YEAR AGE_GROUP count
1,1,1-TRICHLOROETHANE DEPRESSION F 5 U 1
1,1,1-TRICHLOROETHANE DERM CONTACT M 2 Y16-45 1
1,1,1-TRICHLOROETHANE DRUG INTERACTION F 5 U 1
1,1,1-TRICHLOROETHANE REACT AGGRAV F 5 U 1
2,2,2-TRICHLOROETHANOL OVERDOSE M 2 Y16-45 1
ABCIXIMAB ABDO ENLARGE F 6 Y45-65 1
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Last Lines of the Output

ANALYSIS_NAME COSTART SEX YEAR AGE_GROUP count
ZORUBICIN HYDROCHLORIDE PHOSPHATASE ALK INC M 3 Y45-65 1
ZORUBICIN HYDROCHLORIDE PNEUMONIA F 4 Y12-16 1
ZORUBICIN HYDROCHLORIDE POLYURIA F 6 Y12-16 1
ZORUBICIN HYDROCHLORIDE SEPSIS F 4 Y12-16 1
ZORUBICIN HYDROCHLORIDE SGOT INC M 3 Y45-65 1
ZORUBICIN HYDROCHLORIDE WEIGHT DEC F 6 Y12-16 1
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Components of the New
Systems

Program modules for each graphic type

Derived datasets of signal scores

SRS or AERS data extraction

New technology: Uses distinct counts of event
+ drug (or drug pair) combinations to estimate
SS derived from application of a statistical
model to identify the ones observed at higher
than expected frequencies
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Derived database of "signal
scores"
• Program written by William DuMouchel

from AT&T Labs—Research
(Dumouchel@research.att.com)
– DuMouchel W. The American Statistician, August

1999, Discussion by O’Neill RT, Szarfman A. and
others. The American Statistician, August 1999

• Method appropriately adjusts scores for
unstable signals associated with cells
with very small expected counts
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Notation for counts
• Mi = Total drug frequency
• Nj = Total event frequency
• T = Total database frequency = 5.8 million

• Eij =  (Mi Nj)/T = usual statistical Expected
frequency analysis for drug-event count

• Oij = Observed drug count
• Sij = f (Oij, Eij) = Empirical Bayes "signal score"
• The "signal score" is DERIVED from the database
• The score is big if O >>E
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The array of drug-event
combination cells is vast

• Many cells are empty cells (drug-event
combinations that do not exist)

• Many cells have very small expected
frequencies

• This has always posed many
analytical problems
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Properties of the computations
of "signal scores"

• Stratification of calculation of the Eij by gender,
time, age groups, and SRS and AERS

• A model DERIVED from the data "shrinks"
(adjusts) "unstable" O/E and ranks "'interesting'
signal scores"

• This adjustment dampens "unstable" O/E (Eij
too small (0.001) due to small Mi and Nj)

• Method picks out O/E ratios much larger than 1
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Counts
• SRS (1968-October 1997)

• 5.8 million

• AERS (Post-October 1997)
• 2.4 million

• Counts per gender
– SRS total frequency count  5.8 million
–    Female  3.2 million (58%)
–    Male   2.3 million (42%)
–    Unknown  0.3 million

(A similar F/M proportion is generally seen in drug utilization data*
(⇑ with antidepressants, ⇓ with aspirin)
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First Lines of the Output

Rank ANALYSIS_NAME COSTART N        E     RR             EBGM
1 IOPHENDYLATE ARACHNOIDITIS 309 0.283102 1091.48 852.92
2 ROPIVACAINE LABOR ABNORM 63 0.04033 1562.1 526.31
3 FACTOR IX COMPLEX HIV SYND 205 0.352493 581.57 474.63
4 ETIDOCAINE TRISMUS 84 0.129145 650.43 402.55
5 PHENIRAMINE MYDRIASIS 125 0.235948 529.78 396.22
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Components of the New
Systems

Program modules for each graphic type

Derived datasets of signal scores

SRS or AERS data extraction

New technology: A set of
pre-programmed graphical
displays and modules to
explore and examine SS
and ancillary data
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Spatial map showing the signal scores for the the
most frequently reported events (rows) and drugs
(columns)
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Spatial map showing fingerprints of signal scores
for drugs (rows) associated with specific events
(columns)
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BLEED TIME INC
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TOP PANEL: New method:
Timing (x-axis) of all events that generated
signals (y-axis)

Color-coded scores (from highest to
lowest): red >= 4, blue <4

Numbers: number of reports for each
interesting score
Events are sorted by time of detection
Filter: scores >2 & N >6

MIDDLE PANEL, Current method, timing
of signals in the MAR tracking system

Signal scores, number of reports, and events (rows)
associated with a specific drug according to the years
(columns) when the first signal was detected

BOTTOM PANEL: New
method, cumulative number of
reports
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M>F

Spatial map showing fingerprints of signal scores
for specific events by gender (rows) and the
associated drugs (columns)

F>M
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Process of validation

• We validated this approach using
positive and negative controls and by
picking up rare events earlier than with
current methods

• Signals are routinely examined for
consistency among drugs of similar
chemical structure or among related
adverse events
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• Positive associations included
– drug-events that lead to removal of drugs

from the market or that
– required labeling changes, and
– signals identified by using routine methods

• Negative associations were identified
– by comparing drugs in several drugs

classes used to treat the same indications
– identifying that signals characteristic of one

class of drugs were absent in the other
classes
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NSAIDs: Analysis of 30 years of selected Signal Scores

- 4 -

Marketed

Cutpoints:
>5
<=5
<=4
<=3
<=2

Spatial map showing the positive and negative events
(columns) among NSAIDs grouped by class (rows) by
the intensity of SS (color) (page 4 of 9). These results
confirm previous medical knowledge
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Strengths of the systems
• Allow to look across all the data
• The huge size of this database and the

use of this new methodology enable
multiple comparisons and probing for
consistency and replication across
groups of events and classes of drugs

• Very sensitive in detecting safety
signals associated with a small number
of reports
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Important considerations

• Signals detected include condition being
treated (lack of effect and its variations
is one of the most common complaints)

• Need expertise of Safety Reviewers and
Medical Officers to analyze and
interpret the data
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Determination of the
labeling status of an
adverse event

• Safety analyses require knowing the
"labeled" versus "unlabeled" status of
drug-event combinations

• The events need to be efficiently
extracted from the free text in package
inserts and used to filter known signals
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Conclusions
• Data standardization will simplify the

systematic analysis of safety data
• We will continue making progress in the

drug safety area
– The correlation between adverse event

activity and chemical structure will help
predict the toxic potential of new drugs

– The identification of drug metabolism
phenotypes will help predict patients at risk
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